USN								10EC/TE6
	 	 	 	L	ı	F	1	

Sixth Semester B.E. Degree Examination, Dec.2016/Jan.2017 Digital Communication

Time: 3 hrs. Max. Marks: 100

Note: Answer FIVE full questions, selecting at least TWO questions from each part.

PART - A

- 1 a. State and prove sampling theorem for low pass signals assuming train of impulses for sampling.

 (08 Marks)
 - b. Explain the principle of quadrature sampling of band pass signals. (06 Marks)
 - c. The signal $g(t) = 4\cos(4\pi t)(\cos 400\pi t)$ is sampled at the rate of 500 samples per second:
 - i) Determine the spectrum of the resulting sampled signal.
 - ii) What is Nyquist rate for g(t)?
 - iii) What is cut off frequency of ideal reconstruction filter?

(06 Marks)

- 2 a. With a suitable block diagram, explain the functioning of PCM system. (10 Marks)
 - b. Three independent message source of bandwidths 1 kHz, 1 kHz and 2 kHz respectively are to be transmitted using TDM scheme. Determine
 - i) The commutator segment arrangement.
 - ii) The speed of commutator if each signal is sampled at its Nyquist rate.
 - iii) Minimum transmission bandwidth.

(05 Marks)

- c. The bandwidth of signal input to PCM is restricted to 4 kHz. The input varies from -3.8 to 3.8 V and has average power of 30 mW. The required signal to noise ratio is 20 dB. The modulator produces binary output. Assume uniform quantization
 - i) Calculate the number of bits required per sample.
 - ii) Output of 30 such PCM coders are time multiplexed. What is the minimum required transmission bandwidth for multiplexed signal? (05 Marks)
- 3 a. With neat diagram, explain the operation of DPCM.

(v) Manchester coding (vi) Bipolar NRZ.

(06 Marks)

b. Derive the expression for output signal to quantization noise ratio of a delta modulator.

(10 Marks)

- c. Assume a speech signal with a minimum frequency of 3.4 kHz and a maximum amplitude of 1 V. The speech signal is applied to a delta modulator with its bit rate at 25 kbps. Discuss the choise of an appropriate step size for a delta modulator. (04 Marks)
- 4 a. Describe Nyquist criteria for distortionless baseband transmission.

(06 Marks)

- b. A binary data sequence is 10110100. Sketch the waveforms for the following formats:
 - (i) Unipolar NRZ
- (ii) Unipolar RZ
- (iii) Polar NRZ
- (iv) Polar RZ (06 Marks)
- c. With a neat structure explain concept of adaptive equalization process.

Show that probability of symbol error for frequency shift keying is $P_e = \frac{1}{2} \operatorname{erfc} \left(\sqrt{\frac{\epsilon_b}{2N_0}} \right)$ 5

- b. With a block diagram of QPSK transmitter and receiver explain generation and demodulation of a OPSK wave. (08 Marks
- a. Explain the importance of geometric interpretation of signals. Illustrate the geometric 6 interpretation of signals for the case of 2-dimensional signal space with 3 signals. (08 Marks:
 - b. Three signals $S_1(t)$, $S_2(t)$ and $S_3(t)$ are as shown. Apply Gram-Schmidt procedure to obtain an orthonormal basis for the signals. Express the signals $S_1(t)$, $S_2(t)$ and $S_3(t)$ in terms o orthonormal basis functions. Also give the signal constellation diagram.

Derive the expression for maximum signal to noise power ratio of a matched filter.

(12 Marks

- b. Explain the working of a correlation receiver with block diagram of a detector and vector receiver. (08 Marks
- a. Explain direct sequence spread spectrum technique with block diagram.

(08 Marks

b. Differentiate slow frequency hopping and fast frequency hopping.

(05 Marks

- c. A 3-stage shift register with a linear feedback generates the sequence: 01011100101110
 - i) Determine the period of the given infinite sequence.
 - ii) Verify the three properties of the PN sequence for the given sequence.

(07 Marks: